Что из ниже перечисленного является методом проектирования. Основные этапы проектирования


Без развития методов проектирования структур управления затрудняется совершенствование управления и повышение эффективности производства, так как:

во-первых , в новых условиях в целом ряде случаев нельзя оперировать старыми организационными формами, которые не удовлетворяют требованиям рыночных отношений, создают опасность деформации самих задач управления;

во-вторых , в сферу хозяйственного управления невозможно переносить закономерности управления техническими системами. Комплексный подход к совершенствованию организационного механизма во многом был подменен внедрением и использованием автоматизированных систем управления (АСУ) - работой исключительно важной, но не единственной в развитии управления на всех уровнях. Создание автоматизированных систем управления нередко ведется в отрыве от улучшения структуры управления, недостаточно связано с организационными факторами;

в-третьих , создание структуры должно опираться не только на опыт, аналогию, привычные схемы и, наконец, интуицию, но и на научные методы организационного проектирования;

в-четвертых , проектирование сложнейшего механизма – механизма управления - должно возлагаться на специалистов, владеющих методологией формирования организационных систем.

При разработке принципов и методики проектирования структур управления важно отойти от представления структуры как застывшего набора органов, соответствующих каждой специализированной функции управления. Организационная структура управления – понятие многостороннее. Оно прежде всего включает систему целей и их распределение между различными звеньями, поскольку механизм управления должен быть ориентирован на достижение целей. Сюда же относятся состав подразделений, которые связаны определенными отношениями; распределение задач и функций по всем звеньям; распределение ответственности, полномочий и прав внутри организации, отражающее соотношение централизации и децентрализации управления. Важными элементами структуры управления являются коммуникации, потоки информации и документооборот в организации. Наконец, организационная структура – это поведенческая система, это люди и их группы, постоянно вступающие в различные взаимоотношения для решения общих задач.

Такая многосторонность организационного механизма несовместима с использованием каких-либо однозначных методов–либо формальных, либо неформальных. Именно поэтому необходимо исходить из сочетания научных методов и принципов формирования структур (системного подхода, программно-целевого управления, организационного моделирования) с экспортно-аналитической работой, изучением отечественного и зарубежного опыта, тесным взаимодействием разработчиков и тех, кто практически будет внедрять и использовать проектируемый организационный механизм. В основу методологии проектирования структур должно быть положено четкое формулирование целей организации. Сначала формулируются цели, а затем – механизм их достижения. При этом организация рассматривается как многоцелевая система, поскольку ориентация на одну цель не отражает ее многообразную роль в развитии экономики.

Особое значение имеют характер влияния внешней среды на построение организации и система связей элементов структуры с элементами внешней среды (рис. 28.1).

Системность подхода к формированию организационной структуры проявляется в следующем: 1) не упускать из виду ни одну из управленческих задач, без решения которых реализация целей окажется неполной; 2) выявить и взаимоувязать применительно к этим задачам систему функций, прав и ответственности по вертикали управления – от генерального директора предприятия до мастера участка; 3) исследовать и организационно оформить все связи и отношения по горизонтали управления, т. е. по координации деятельности разных звеньев и органов управления при выполнении общих текущих задач и реализации перспективных межфункциональных программ; 4) обеспечить органическое сочетание вертикали и горизонтали управления, имея в виду нахождение оптимального для данных условий соотношения централизации и децентрализации с управлении. Все это требует тщательно разработанной поэтапной процедуры проектирования структур, детального анализа и определения системы целей, продуманного выделения организационных подразделений и форм их координации.

    Основные методологические принципы проектирования

Существует несколько определений термина «проектирование». В основном они характеризуют его с двух сторон, как общераспространенное понятие и с научно-технической позиции :

Проектирование -деятельностьчеловека илиорганизации (ий)по созданиюпроекта, то естьпрототипа, прообраза предполагаемого или возможного объекта, состояния; комплекта документации, предназначенной для создания определённого объекта, его эксплуатации, ремонта и ликвидации, а также для проверки или воспроизведения промежуточных и конечных решений, на основе которых был разработан данный объект.

От специфического для машиностроения,строительстваи других отраслей науки и техники понятия«проект» (англ. design) в значении «проектная документация» следует отличать используемое в области деятельностиуправление проектами в контекстеменеджмента понятие«проект» (англ. project, отлат.projectus - брошенный вперёд, выступающий) в значении «некоторая задача с определёнными исходными данными и требуемыми результатами (целями), обусловливающими способ её решения», «программа», «комплекс работ» и т. п.

Проектирование может включать несколько этапов от подготовки технического задания до испытания опытных образцов. Объектом проектирования являетсяпроект материальногопредмета .

Понятие «проектирование» не включает в себя стадию реализации проекта.

Проектирование обладает своей методологией , которая включаетструктуру деятельности,принципы инормы деятельности,субъектов ,объект и егомодели ,методы и др.

Методы проектирования

Основная статья: Методы проектирования

    Эвристические методы

    • Метод итераций (последовательного приближения)

      Метод декомпозиции

      Метод контрольных вопросов

      Метод мозговой атаки (штурма)

      Теория решения изобретательских задач (ТРИЗ)

      Метод морфологического анализа

      Функционально-стоимостной анализ

      Методы конструирования

    Экспериментальные методы

    • Цели и виды экспериментальных методов

      Планирование эксперимента

      Машинный эксперимент

      Мысленный эксперимент

    Формализованные методы

    • Методы поиска вариантов решений

      Методы автоматизации процедур проектирования

      Методы оптимального проектирования

3 Процесс формирование организационной структуры

Процесс формирования организационной структуры включает в себя формулировку целей и задач, определение состава и место подразделений, их ресурсное обеспечение (включая численность работающих), разработку регламентирующих процедур, документов, положений, закрепляющих и регулирующих формы, методы, процессы, которые осуществляются в организационной системе управления.

Весь этот процесс можно организовать по трем крупным стадиям:

Формирование общей структурной схемы во всех случаях имеет принципиальное значение, поскольку при этом определяются главные характеристики организации, а также направления, по которым должно быть осуществлено более углубленное проектирование как организационной структуры, так и других важнейших аспектов системы (способность переработки информации).

Разработка состава основных подразделений и связей между ними заключается в том, что предусматривается реализация организационных решений не только в целом по крупным линейно-функциональным и программно-целевым блокам, но и вплоть до самостоятельных (базовых) подразделений аппарата управления, распределения конкретных задач между ними и построения внутриорганизационных связей. Под базовыми подразделениями понимаются самостоятельные структурные единицы (отделы, бюро, управления, секторы, лаборатории), на которые организационно разделяются линейно-функциональные и программно-целевые подсистемы. Базовые подразделения могут иметь свою внутреннюю структуру.

Регламентация организационной структуры - предусматривает разработку количественных характеристик аппарата управления и процедур управленческой деятельности. Она включает:

 - определение состава внутренних элементов базовых подразделений (бюро, групп и должностей);

 - определение проектной численности подразделений;

 - распределение задач и работ между конкретными исполнителями;

 - установление ответственности за их выполнение;

 - разработку процедур выполнения управленческих работ в подразделениях;

 - расчеты затрат на управление и показателей эффективности аппарата управления в условиях проектированной организационной структуры.

Когда требуется взаимодействие многих звеньев и уровней управления, разрабатываются специфические документы, которые называются органиграммами. Последние представляют собой графическую интерпретацию процесса выполнения упраленческих функций, их этапов и входящих в них работ, описывающую распределение организационных процедур разработки и принятия решения между подразделениями, их внутренними структурными органами и отдельными работниками.


Методика проектирования и строительства


При постоянно возрастающих объемах и темпах строительства в нашей стране необходимым средством его успешного осуществления являются, как уже говорилось, стандартизация и заводское производство строительных изделий и индустриализация самих процессов строительства. Это относится к самому массовому виду строительства - жилым зданиям.

В процессе индустриализации строительства менялись способы стандартизации и типизации, а следовательно, и методы проектирования жилых зданий. Однако базой для типизации и стандартизации была и остается единая модульная система (ЕМС), позволившая унифицировать параметры жилых зданий (шаг, пролет, высота этажа) и сократить количество типоразмеров строительных изделий, создавшая условия для возможности их взаимозаменяемости и применения в зданиях различной конструкции.

На рис. 1 приводится пример решения секции жилого дома на модульной сетке 0,60X0,60 м.

В начальный период массовой индустриализации жилого строительства (50-60-е годы), когда была поставлена задача в кратчайший срок удовлетворить острую потребность в комфортабельном жилище, переселить семьи из коммунальных квартир, а во многих случаях и из подвалов, в отдельные квартиры, единственно верным способом перехода на заводской метод домостроения было типовое проектирование. При этом объектом стандартизации было целое здание - типовой дом, а затем серия домов, в которую входили дома разной протяженности и ориентации.

Рентабельность и производительность заводов, изготовляющих сборные элементы, требует выпуска как можно меньшего количества типоразмеров конструктивных и строительных элементов, не меняющихся в течение достаточно длительного времени, с тем чтобы окупить затраты на строительство завода и технологическое оборудование. Переход на массовое жилое строительство по типовым проектам обеспечивал выполнение этих требований.

Такая мера была важнейшим социальным актом, но вместе с тем преобладание в то время технической и экономической стороны проблемы вытеснило эстетические качества жилых зданий, качество, всегда присущее жилищу начиная с его народных истоков. Одним из признаков архитектуры жилища была неразрывность с природой, окружающей средой, эмоциональность. Абстрактное типовое проектирование не могло отвечать таким требованиям. Но этим в тот исторический период пришлось пренебречь ради решения важнейшей насущной задачи - быстрейшего обеспечения населения нашей страны комфортабельным жилищем, причем с наименьшими затратами средств.

Рис. 1. Применение модуля при проектировании жилых зданий:
а - горизонтального; б - вертикального

Массовое вторжение типовых зданий в исторические города, огромные масштабы роста новых городов и поселков, создаваемых на основе тех же типовых зданий, привели к однообразию жилой застройки, потере индивидуальности и своеобразия населенных мест.

В настоящее время, когда острота жилищного голода миновала, а благосостояние народа возросло, метод только серийного проектирования становился тормозом в дальнейшем развитии архитектуры жилища и жилой застройки населенных мест.

Все это потребовало поиска новых путей проектирования, но не отказываясь, а наоборот, усиливая, совершенствуя процесс индустриального домостроения, потребовало решать задачу гармоничного соединения передовой техники и искусства.

Введение различных соединительных вставок между типовыми домами первоначально позволило несколько разнообразить застройку, но принципиальных изменений не принесло.

Блок-секционный метод проектирования и строительства, предложенный в Ленинграде и получивший достаточно широкое распространение в Москве, Минске, Днепропетровске, Киеве, Свердловске и других городах, расширил возможности разнообразить объемно-планировочные решения. В основе этого метода заложен принцип типизации не здания, а блоков квартир и секций, из которых и компонуются дома разнообразных очертаний в плане и силуэте. Однако и этот прием не может в полной мере решить разнообразия архитектурных решений.

В поисках лучших возможностей архитекторы идут по пути углубления и совершенствования методики типового проектирования. Так, Московским государственным объединением крупнопанельного домостроения была разработана методика, по которой различные по набору квартир секции компонуются из ограниченного числа компоновочных объемно-плани-ровочных элементов - КОПЕ, представляющих собой квартиру или две-три квартиры. По сравнению с блок-секционным методом эта система обладает относительно большей градостроительной маневренностью. Киевским институтом Госгражданстроя предложена система домостроения «Мобиле», основная идея которой заключается в максимальном сокращении количества марок заводских изделий и создания на их основе единой конструктивно-планировочной ячейки. Но все эти предложения принципиально не меняют подходов к методам типового проектирования.

Принципиально новым методом проектирования жилых зданий должна стать «открытая» система, при которой объектом типизации становится не дом, не секция или квартира, а набор строительных элементов и изделий, из которых методом вариантного их использования компонуется здание или комплекс зданий. Такой метод возможен только при «гибкой технологии» домостроительных предприятий, направленной на выпуск изменяемой продукции, но при соблюдении высокой эффективности производства. В этом направлении работают ведущие проектные и научные институты.

Московскими институтами, например, предлагается «гибкое производство» организовать путем расчленения заводских изделий на относительно постоянные (внутренние стены, перекрытия, лестницы, вентиляционные блоки и др.) и часто сменяемые (наружные панели с различными фактурами и видами отделки, объемные элементы эркеров, лоджий, балконов, фризовые панели, декоративные вставки и другие архитектурные детали). Количество типоразмеров неизменяемых (постоянных) конструктивных изделий должно быть минимальным. Из них компонуются типовые элементы дома (квартиры, группы квартир, блок-секции), из которых составляются варианты объемно-планировочных решений жилых домов. Разнообразие пластических решений архитектуры фасадов достигается номенклатурой периодически заменяемых отделочных материалов и цветов наружных панелей, ограждений лоджий и балконов, деталей входов, витрин и т. д.

Такое решение требует перестройки всей системы заводского домостроения. Его управление станет более сложным, оно потребует более совершенного планирования и комплектации, что может быть обеспечено только применением ЭВМ.

Конструктивные и архитектурные разработки также потребуют широкого использования средств вычислительной техники - автоматизации операций расчета, конструирования и разработки проектной документации.

При этом творческая деятельность архитектора по компоновке архитектурно-планировочных решений остается традиционной, а ручные и автоматизированные операции по выполнению проекта рационально сочетаются в едином процессе.

Особое значение в деле развития и совершенствования качества архитектуры жилых зданий, создания новых типов квартир и целых комплексов имеет метод экспериментального проектирования и строительства.

Такой метод дает возможность оценить новые архитектурно-планировочные и конструктивные решения, выявить рациональность методов строительного производства, эксплуатационной надежности и т. п., с тем чтобы дать обоснованное заключение о целесообразности внедрения новых предложений в повторное или массовое строительство.

Несмотря на всю многогранность проблемы оптимизации строительных стальных конструкций, можно отметить много общих черт в подходе к решению этой проблемы для разных конструкций. Эта общность проявляется, прежде всего, в способе формулирования задачи, выборе критерия оптимальности и в использовании методов (или приемов) решения задачи оптимизации.

Задача оптимального проектирования конструкции, как указывалось в главе I, может быть сформулирована как задача математического программирования. Такая задача предусматривает наличие двух компонентов: 1) целевой функции, соответствующей выбранному критерию оптимальности (значение целевой функции численно характеризует показатель качества); 2) системы ограничений, описывающих условия удовлетворительного функционирования рассматриваемого эле-мента.

Обычно в качестве критерия выступают экономические показатели конструкций (стоимость, масса, трудоемкость), хотя возможны и другие критерии, в которых экономические требования выступают в неявной форме (например, срок возведения) или отсутствуют (например, уникальность или эстетические соображения). В последнем случае критерии трудноформализуемы или вообще неформализуемы, поэтому использование таких критериев не вписывается в рамки задач математического программирования.

Система ограничений в задачах оптимального проектирования стальных строительных конструкций включает следующие условия:
1) требования СНиП по прочности, устойчивости, гибкости, деформативности и т. п.;
2) габаритные ограничения для искомых параметров конструкции;
3) ограничения на применяемый сортамент проката, марки стали, соединения элементов; 4) ограничения, обусловливаемые особыми условиями изготовления, монтажа или эксплуатации конструкции.

Рассмотрим формулировку задачи оптимального проектирования в терминах математического программирования. Нужно найти размеры сечения изгибаемого сварного симметричного двутаврового элемента минимальной площади. Заданы изгибающий момент М и расчетное сопротивление стали R. Высота балки не должна превышать Н. Считать, что условия деформативности, устойчивости элемента в целом и устойчивости стенки и пояса выполняются.

Это интересно. Проектирование – это процесс, который затрагивает не только непосредственно область строительства, но и многие другие смежные сферы деятельности. В частности, пластиковые евроокна устанавливаются только после того, как предварительно будет произведено их проектирование. В данном случае под проектированием следует понимать процесс расчета, сопоставления и анализа данных, в результате чего такие окна идеально впишутся в оконные проемы.

Создание автоматизированных информационных систем и технологий в экономике может осуществляться по двум вариантам. Первый вариант предполагает, что этой работой занимаются специализированные фирмы, имеющие профессиональный опыт подготовки программных продуктов конкретной ориентации (бухгалтерский промышленный учет, бухгалтерский учет в банках, автоматизация конкретных банковских операций и т.п.), их продажи и дальнейшего сопровождения в организациях, эксплуатирующих поставленные программные средства и системы. Если АИС и АИТ создаются по второму варианту, проектированием и созданием разработок в этой области занимаются проектировщики-программисты, находящиеся в штате предприятий и организаций, где осуществляется переход на использование новых технических средств, создаются новые информационные технологии и системы. В проведении проектировочных работ в настоящее время встречаются две крайности. В одном случае строго соблюдаются стандарты изготовления документации, но зато сроки разработки сильно затягиваются, создание системы не вписывается в ритм реальной жизни и она оказывается нежизнеспособной. В другом случае умение разработчиков создавать программы для автоматизации решения отдельных задач позволяет им без задержек обеспечить процесс использования разработок конечным пользователем, система начинает работать, но создание документации отстает и в результате получается изделие, трудоемкое для эксплуатации, а освоение его в значительной степени зависит от специалистов-разработчиков. Это противоречие преодолимо при соблюдении проектной дисциплины.

В процессе разработки автоматизированных систем, рабочих мест и технологий проектировщики сталкиваются с рядом взаимосвязанных проблем.

Проектировщику сложно получить исчерпывающую информацию для оценки формулируемых заказчиком (пользователем) требований к новой системе или технологии.

Заказчик нередко не имеет достаточных знаний о проблемах автоматизации обработки данных в новой технической среде, чтобы судить о возможности реализации тех или иных инноваций. В то же время проектировщик сталкивается с чрезмерным количеством подробных сведений о проблемной области, что вызывает трудности моделирования и формализованного описания реализуемых в новых условиях информационных процессов, решения функциональных задач.

Спецификация проектируемой системы из-за большого объема и технических терминов часто непонятна заказчику, а чрезмерное ее упрощение не может удовлетворить специалистов, создающих систему.

С помощью известных аналитических методов можно разрешить некоторые из перечисленных проблем, однако радикальное решение дают только современные структурные методы, среди которых центральное место занимает методология структурного анализа.

Структурным анализом принято называть метод исследования системы, который начинается с ее общего обзора и затем детализируется, приобретая иерархическую структуру со все большим числом уровней. Структурный анализ предусматривает разбиение системы на уровни абстракции с ограниченным числом элементов на каждом из уровней (обычно от 3 до 6-7). На каждом уровне выделяются лишь существенные для системы детали. Данные рассматриваются в совокупности с операциями, выполняющимися над ними. Используются строгие формальные правила записи элементов информации, составления спецификации системы и последовательное приближение к конечному результату.

Методология структурного анализа базируется на ряде общих принципов, часть из которых регламентирует организацию работ на начальных этапах жизненного цикла создаваемой информационной системы, а часть используется при выработке рекомендаций по организации работ. В качестве двух базовых принципов используются принцип декомпозиции и принцип иерархического упорядочивания. Первый принцип предполагает решение трудных проблем структуризации комплексов функциональных задач путем разбиения их на множество меньших независимых задач, легких для понимания и решения. Второй принцип декларирует, что устройство этих частей также существенно для понимания при детальном формализованном их описании. Понимаемость проблемы резко повышается при организации ее частей в древовидные иерархические структуры, т. е. система может быть понята и построена по уровням, каждый из которых добавляет новые детали.

На предпроектной стадии проводится изучение и анализ всех особенностей объекта проектирования с целью уточнения требований заказчика, их формализованного представления и документирования. В частности, выявляется совокупность условий, при которых предполагается эксплуатировать будущую систему (аппаратные и программные ресурсы, предоставляемые системе; внешние условия ее функционирования; состав людей и работ, имеющих к ней отношение и участвующих в информационных и управленческих процессах), производится описание выполняемых системой функций и т.п. На этой же стадии устанавливаются ограничения в процессе разработки (директивные сроки завершения отдельных этапов, имеющиеся ресурсы, организационные процедуры и мероприятия, обеспечивающие защиту информации и т.п.).

Целью анализа на этой стадии является преобразование общих, неясных знаний о требованиях к будущей системе в точные (по возможности) определения. Так, на этом этапе определяются:

Архитектура системы, ее функции, внешние условия, распределение функций между аппаратными средствами и программным обеспечением;

Интерфейсы и распределение функций между человеком и системой;

Требования к программным и информационным компонентам системы, необходимые аппаратные ресурсы, требования к базе данных, физические характеристики компонентов системы, их интерфейсы.

Качество дальнейшего проектирования решающим образом зависит от правильного выбора методов анализа, сформулированных требований к вновь создаваемой технологии. Эти методы служат для проведения изучения и исследования, разработки и оценки проектных решений, закладываемых при создании АС, а также для обеспечения экономии затрат и сокращения сроков проектирования и внедрения системы.

Методы, используемые на стадии предпроектного обследования, подразделяются на методы изучения и анализа фактического состояния объекта (технологии), методы формирования заданного состояния, методы графического представления фактического и заданного состояний (рис. 2.2). Рассмотрим эти методы более подробно.

Рис. 2.2. Работы и методы их выполнения на предпроектной стадии

Методы изучения и анализа фактического состояния экономического объекта или технологии. Эти методы позволяют выявить узкие места в исследуемых процессах и включают:

Устный или письменный опрос;

Письменное анкетирование;

Наблюдение, измерение и оценку;

Групповое обсуждение;

Анализ задач;

Анализ процесса.

Устный и письменный опрос. Устный опрос производится по заранее составленному вопроснику на рабочем месте специалиста с записью ответов и позволяет в форме несложной беседы понять технологию работы и опыт опрашиваемого. Затруднения психологического порядка легко преодолеваются и можно приступить к подготовке нового решения уже на стадии анализа. Недостатком этого метода является разнородность результатов опроса.

Письменное анкетирование с помощью перечня вопросов дает (при условии готовности опрашиваемых к правдивым ответам) полную и основательную информацию. При достаточно большом количестве анкет практикуется их обработка на ЭВМ. Чтобы повысить качество анкетирования, целесообразно ввести подсказку ответов: «да - нет», «малый - средний - большой» и т.д. Существенное влияние на качество результатов оказывают четкость, недвусмысленность вопросов, поэтому разработка перечня вопросов предполагает знание принципиальной проблемной ситуации.

Наблюдение, измерение и оценка. С помощью этих методов собираются сведения о параметрах, признаках и объектах в соответствующей сфере исследования. Важные для изучения параметры, признаки и объекты точно оцениваются сотрудниками и регистрируются в карточках или в формулярах (например, по частоте, количеству, продолжительности, затратам). Накопление сведений и анализ результатов при достаточно большом количестве наблюдений выполняется на ЭВМ.

Групповое обсуждение проводится проектировщиками, программистами совместно с пользователями или заказчиками с целью обобщения и обсуждения всех важных для решения проблем вопросов и определения необходимых задач.

Анализ задач. Суть этого метода состоит в вертикальной и горизонтальной структуризации задач и их распределении между ис полнителями (должностными инструкциями) на основе заданной структуры объекта. Задачи расчленяются до такой степени, чтобы имелась возможность определить результаты, решения, полномочия, алгоритмы, входную и выходную информацию. Анализ задач - это первый этап и предпосылка описания задач, которые являются основой для построения технологии получения результатов, разработки должностных инструкций и планов распределения функций при работе в новых технологических условиях. Отправным пунктом анализа служат требования к объекту и его информационной системе.

Анализ производственных, управленческих и информационных процессов используется для подготовки решений, касающихся реорганизации технологии информационных процессов. С помощью анализа процесса решения задач разрабатываются необходимые изменения, которые должны быть внесены в информационную технологию. Одновременно уточняются целевые установки решаемых задач.

Анализ производственных, управленческих и информационных процессов должен охватывать в первую очередь следующее: обследуемый объект; цель и результат решения управленческих задач; составляющие технологического процесса - решения, операции и алгоритмы; объем и качество информации; средства обработки информации; требования к управленческому персоналу и рабочему месту; методы работы; узкие места, помехи, трудности; требования рациональной организации техпроцесса.

В целом методы изучения и анализа фактического состояния управленческой деятельности и существующей технологии решения задач предназначены для установления и оценки процессов, функций, предъявляемых к работникам требований, последовательности вьшолнения технологических операций и средств труда, продолжительности и сроков выполнения работ, потоков информации. Они способствуют сбору необходимых материалов и формированию необходимой исходной основы для проектирования АИС и АИТ.

Методы формирования заданного состояния. Основываются на теоретическом обосновании всех составных частей и элементов АИС исходя из целей, требований и условий заказчика. К данным методам, представляющим собой рабочие средства проектировщиков, относятся методы:

Моделирование процесса управления;

Структурное проектирование;

Декомпозиция;

Анализ информационного процесса.

Метод моделирования процесса управления. В процессе изучения объекта проектирования строятся экономико-организационные и информационно-логические модели, которые включают задачи, структуры и ресурсы объекта. Они отражают хозяйственные и управленческие отношения, а также связанные с ними информационные потоки. Представляя комбинацию материальных и информационных процессов, способствуют повышению уровня организации объекта.

Информационно-логические модели содержат необходимые сведения об информационных связях между органами и сферами управления, комплексами решаемых задач и отдельными задачами в единстве с хозяйственными процессами.

Метод структурного (модульного) проектирования позволяет разработать проект четко разграниченных блоков (модулей), между которыми устанавливаются связи посредством входной и выходной информации, а также показывается иерархия их подчиненности. Условиями применения этого метода являются разбиение крупных комплексов задач на подкомплексы и точное обозначение (идентификацию) всех звеньев разъединения и сопряжения. Метод структурного проектирования позволяет разделить весь комплекс задач на обозримые и поддающиеся анализу подкомплексы (модули).

Метод декомпозиции модулей предусматривает дальнейшее разбиение подкомплексов задач на отдельные задачи, показатели. Подход к разбиению всей совокупности задач по принципу «сверху вниз» особенно удобен для разработки принципиальных организационно-технических решений, внесения в них при необходимости изменений, а также увязки при проектировании хозяйственных и организационно-управленческих целевых установок с конкретными задачами и показателями.

Анализ и моделирование информационных процессов предназначен для выявления и представления в каждом случае взаимосвязи между результатом, процессом обработки и вводом данных. Он используется также для анализа и формирования информационных связей между рабочими местами работников управления, специалистов, технического персонала и информационными технологиями. С этой целью описываются входная и выходная информация, а также алгоритм обработки информации применительно к каждому рабочему месту. Путем обнаружения и последовательного соединения многочисленных цепочек обработки и передачи данных формируются сложные информационные процессы и осуществляется учет потребности в информации отдельных пользователей.

Методы графического представления фактического и заданного состояний предусматривают использование для наглядного представления процессов обработки информации в форме блок-схем, графиков прохождения документов и т.д. Графические методы являются составной частью любого проекта и необходимы для практической работы, поскольку выполняют роль вспомогательного средства при описании внедрения новых технологий. К наиболее известным из них относятся блок-схемный метод, методы стрелочных диаграмм, сетевых графиков, таблиц последовательности операций прохождения процессов. Различия методов выражаются в степени их реализации на ПЭВМ, наглядности, глубине отражаемых процессов.

Если на предпроектной стадии должны быть тщательно проанализированы особенности объекта проектирования, четко сформулированы в техническом задании требования к созданию АИС и АИТ, то проектирование должно дать ответ на вопрос: «Как (каким образом) система будет удовлетворять предъявленным к ней требованиям?». Задачей этой стадии является формирование новой структуры системы и логических взаимосвязей ее элементов, которые будут функционировать на предложенной технологической платформе. Проектирование реализует итерационный процесс получения логической модели системы вместе со строго сформулированными целями, поставленными перед нею, а также написание спецификаций физической системы, удовлетворяющей этим требованиям. Обычно стадию проектирования разделяют на два этапа.

1. Создание проектных решений, проектирование архитектуры АИС, включающее разработку структуры и интерфейсов компонентов, согласование функций и технических требований к компонентам, методам и стандартам проектирования, производство отчетных документов.

2. Детальное (рабочее) проектирование, включающее разработку спецификаций каждого компонента и, прежде всего, создание или привязку программных средств, интерфейсов между компонентами, разработку плана интеграции компонентов, формирование обширных инструкционных материалов.

В результате проведения этапов проектирования должен быть получен проект системы, содержащий достаточно информации для реализации системы в рамках бюджета выделенных ресурсов и времени.

При разработке проекта АИС и АИТ обеспечиваются разделение труда, кооперация и общение между разработчиками и заказчиками. По мере повышения уровня проектирования неоднократно повышается ответственность за принятие проектных решений. Для обеспечения качественного выполнения проекта этапы разработки системы увязываются с процессом организации ведения проектировочных работ, который включает следующее: разработку целей, задач и организационных принципов при постановке задачи; формирование принципиального проектного решения при выработке концепции проекта и варианта АИС и АИТ; материальнотехническая реализация проектировочных работ при подготовке и отладке программ; апробация организационных решений при опытной эксплуатации и сдаче проекта АИС и АИТ; использование проектных и организационных решений при эксплуатации АИС и АИТ.

Этапы процесса организации и ведения проектировочных работ отражают принципиальный путь разработки и реализации новых проектных решений. Эта типовая концепция пригодна для организации проектирования с различными формами использования средств труда, включая применение ПЭВМ и автоматизацию проектирования. При этом не учитывается характер проблем, подлежащих решению в конкретном случае. На основе типовой концепции организации проектирования каждый этап может быть уточнен в зависимости от повторяющихся рабочих операций. Затем для каждого проекта АИС и АИТ выбираются подлежащие выполнению работы и сводятся в календарный план. В зависимости от характера и сложности решаемых проблем может возникнуть необходимость многократного выполнения определенных этапов. В рамках рабочих этапов предусматривается закрепление за отдельными исполнителями ответственности за разработку задач, стадий проекта и программ.

В процессе организации проектирования принимаются разно -образные решения, влияющие на динамику и качество выполнения работ. Поэтому для каждого этапа проектирования определяются: ожидаемые результаты и документы; персональные функции руководителя; решения, принимаемые руководителем; функции заказчика и разработчика АИС и АИТ.

Согласования с параллельно выполняемыми во времени работами при выборе, обучении, высвобождении и перемещении кадров, а также при подготовке и реализации инвестиционных мероприятий и других работ обязательно включаются в содержание рабочих этапов и находят отражение в проектной и исполнительной документации.

Исполнительная документация относится к отдельным процессам, сферам и разрабатывается в рамках всей проектируемой АИТ. В состав документации входят: организационные инструкции рабочих процессов, программы для рабочих мест, инструкции по оформлению документов, рекомендации по использованию информации, методов, таблиц решений и тд.

Охарактеризовав содержание проектировочных работ при создании АИС и АИТ, нельзя не остановиться на наиболее распространенных в настоящее время методах ведения проектировочных работ.

В современных условиях АИС, АИТ и АРМ, как правило, не создаются на пустом месте. В экономике практически на всех уровнях управления и на всех экономических объектах - от органов регионального управления, финансово-кредитных организаций, предприятий, фирм до организаций торговли и сфер обслуживания - функционируют системы автоматизированной обработки информации. Однако переход к рыночным отношениям, возросшая в связи с этим потребность в своевременной, качественной, оперативной информации и оценка ее как важнейшего ресурса в управленческих процессах, а также последние достижения научно-технического прогресса вызывают необходимость перестройки функционирующих автоматизированных информационных систем в экономике, создания АИС и АИТ на новой технической и технологической базах. Только новые технические и технологические условия - современные АИТ - позволят реализовать столь необходимый в рыночных условиях принципиально новый подход к организации управленческой дея тельности экономическим объектом как деятельности инженерной, получившей название «реинжиниринг».

Термин «реинжиниринг» был введен М.Хаммером; он предусматривает радикальное перепроектирование деловых процессов (бизнес-процессов) для достижения резких, скачкообразных улучшений показателей стоимости, качества, сервиса, темпов развития фирм, компаний, предприятий, организаций на базе АИТ . Реинжиниринг прежде всего предусматривает перестройку экономической деятельности экономического объекта на базе новой информационной технологии. В то же время реинжинирингу подвергаются АИС и АИТ, их техническое, программное, информационное обеспечение, перепроектирование которых ведется на основе вновь создаваемой абстрактной модели пересматриваемой исходной системы.

Поиск рациональных путей проектирования ведется по следующим направлениям: разработка типовых проектных решений, зафиксированных в пакетах прикладных программ (ППП), решения экономических задач с последующей привязкой ППП к конкретным условиям внедрения и функционирования, разработка автоматизированных систем проектирования. Рассмотрим первый из путей, т.е. возможности использования типовых проектных решений, включенных в пакеты прикладных программ.

Наиболее эффективно информатизации поддаются следующие виды деятельности: бухгалтерский учет, справочное и информационное обеспечение экономической деятельности, организация труда руководителя, документооборот, экономическая и финансовая деятельность, обучение.

Наибольшее число ППП создано для бухгалтерского учета. Среди них можно отметить «1 С:Бухгалтерия», «Турбо-Бухгалтер», «Инфо-Бухгалтер», «Парус», «ABACUS», «Бэмби+», «Бухкомп-лекс», «Бэст», «Лука».

Справочное и информационное обеспечение экономической деятельности представлено следующими ППП: «ГАРАНТ»: (налоги, бухучет, аудит, предпринимательство, банковское дело, валютное регулирование, таможенный контроль), «КОНСУЛЬ-ТАНТ+», (налоги, бухучет, аудит, предпринимательство, банковское дело, валютное регулирование, таможенный контроль).

Экономическая и финансовая деятельность поддерживается следующими ППП:

«Экономический анализ и прогноз деятельности фирмы, организации» (фирма ИНЕК), реализующий функции: экономический анализ деятельности фирмы, предприятия; бизнес-план; технико-экономическое обоснование возврата кредитов; анализ и отбор вариантов деятельности; прогноз баланса, потоков денежных средств и готовой продукции;

«Финансовый анализ предприятия» (фирма Инфософт), реализующий функции: общая оценка финансового состояния; анализ финансовой устойчивости; анализ ликвидности баланса; анализ финансовых коэффициентов (ликвидность, маневренность, покрытие, соотношение заемных и собственных средств); анализ коэффициентов деловой активности; расчет и анализ коэффициентов оборачиваемости; оценка рентабельности производства. В области создания финансово-кредитных систем работают фирмы «Диасофт», «Инверсия», R-Style, Программбанк, «Асофт» и др.

В условиях конкуренции выигрывают те предприятия, чьи стратегии в бизнесе объединяются со стратегиями в области информационных технологий. Поэтому реальной альтернативой варианту выбора единственного пакета является подбор некоторого набора пакетов различных поставщиков, которые удовлетворяют наилучшим образом той или иной функции АИС (подход mix-and-match). Такой подход смягчает некоторые проблемы, возникающие при внедрении и привязке программных средств, а АИТ будет более соответствовать функциям конкретной индивидуальности предметной области.

В последнее время все большее число банков, организаций, предприятий предпочитают покупать готовые пакеты и технологии, а если необходимо, добавлять к ним свое программное обеспечение, так как разработка собственных АИС и АИТ связана с высокими затратами и риском. Эта тенденция привела к тому, что поставщики систем изменили ранее существовавший способ выхода на рынок. Как правило, разрабатывается и предлагается теперь базовая система, которая адаптируется в соответствии с пожеланиями индивидуальных клиентов. При этом пользователям предоставляются консультации, помогающие минимизировать сроки внедрения систем и технологий, наиболее эффективно их использовать, повысить квалификацию персонала.

Например, банковская АИС Atlas фирмы Internet спроектирована для любых возможных конфигураций системы. Банки могут, используя свой собственный персонал, настроить конфигурацию системы в соответствии со своими требованиями. Для этого в системе Atlas имеется полный набор средств разработки - обучение, консультации и поддержка.

Аналогично обстоит дело при разработке АИС в других областях экономики. Так, например, разработка АИС для страховой деятельности по силам только специализированным организациям, обобщающим практический опыт работы страховщиков, тесно взаимодействующим с аудиторскими организациями и имеющим штат высококвалифицированных постановщиков задач и программистов.

Автоматизированные системы проектирования - второй, быст-роразвивающийся путь ведения проектировочных работ.

В области автоматизации проектирования АИС и АИТ за последнее десятилетие сформировалось новое направление - CASE (Computer-Aided Software/System Engineering). Лавинообразное расширение областей применения ПЭВМ, возрастающая сложность инфосистем, повышающиеся к ним требования привели к необходимости индустриализации технологий их создания. Важное направление в развитии технологий составили разработки интегрированных инструментальных средств, базирующихся на концепциях жизненного цикла и управления качеством АИС и АИТ, представляющих собой комплексные технологии, ориентированные на создание сложных автоматизированных управленческих систем и поддержку их полного жизненного цикла или рада его основных этапов. Дальнейшее развитие работ в этом направлении привело к созданию ряда концептуально целостных, оснащенных высокоуровневыми средствами проектирования и реализации вариантов, доведенных по качеству и легкости тиражирования до уровня программных продуктов технологических систем, которые получили название CASE-систем или CASE-технологий.

В настоящее время не существует общепринятого определения CASE. Содержание этого понятия обычно определяется перечнем задач, решаемых с помощью CASE, а также совокупностью применяемых методов и средств. CASE-технология представляет собой совокупность методов анализа, проектирования, разработки и сопровождения АИС, поддержанной комплексом взаимосвязанных средств автоматизации. CASE - это инструментарий для системных аналитиков, разработчиков и программистов, позволяющий автомати зировать процесс проектирования и разработки АС, прочно вошедший в практику создания и сопровождения АИС и АИТ. При этом CASE-системы используются не только как комплексные технологические конвейеры для производства АИС и АИТ, но и как мощный инструмент решения исследовательских и проектных задач, таких как структурный анализ предметной области, спецификация проектов средствами языков программирования четвертого поколения, выпуск проектной документации, тестирование реализаций проектов, планирование и контроль разработок, моделирование деловых приложений с целью решения задач оперативного и стратегического планирования и управления ресурсами и т.п.

Основная цель CASE-технологии состоит в том, чтобы отделить проектирование АИС и АИТ от ее кодирования и последующих этапов разработки, а также максимально автоматизировать процессы разработки и функционирования систем.

При использовании CASE-технологий изменяется технология ведения работ на всех этапах жизненного цикла автоматизированных систем и технологий, при этом наибольшие изменения касаются этапов анализа и проектирования. В большинстве современных CASE-систем применяются методологии структурного анализа и проектирования, основанные на наглядных диаграммных техниках, при этом для описания модели проектируемой АИС используются графы, диаграммы, таблицы и схемы. Такие методологии обеспечивают строгое и наглядное описание проектируемой системы, которое начинается с ее общего обзора и затем детализируется, приобретая иерархическую структуру со все большим числом уровней.

CASE-технологии успешно применяются для построения практически всех типов АИС, однако устойчивое положение они занимают в области обеспечения разработки деловых и коммерческих АИС. Широкое применение CASE-технологий обусловлено массовостью этой прикладной области, в которой CASE применяется не только для разработки АИС, но и для создания моделей систем, помогающих коммерческим структурам решать задачи стратегического планирования, управления финансами, определения политики фирм, обучения персонала и др. Это направление получило свое собственное название - бизнес-анализ. Например, для наиболее быстрой и эффективной разработки высококачественной бан ковской системы финансисты все чаще обращаются к помощи технологии CASE. Поставщики этой технологии входят в положение финансистов и быстро расширяют рынок средств. Быстрейшему внедрению технологии CASE способствует также усложнение банковских систем.

CASE - не революция в автоматизации проектирования АИС, а результат естественного эволюционного развития всей отрасли средств, называемых ранее инструментальными или технологическими. Одним из ключевых признаков является поддержка методологий структурного системного анализа и проектирования.

С самого начала целью развития CASE-технологий было преодоление ограничений при использовании структурных методологий проектирования I960-1970-х гг. (сложности понимания, большой трудоемкости и стоимости использования, трудности внесения изменений в проектные спецификации и т.д.) за счет их автоматизации и интеграции поддерживающих средств. Таким образом, CASE-технологии не могут считаться самостоятельными методологиями, они только развивают структурные методологии и делают более эффективным их применение за счет автоматизации.

Помимо автоматизации структурных методологий и как следствие возможности применения современных методов системной и программной инженерии, CASE-технологии обладают следующими основными достоинствами:

Улучшают качество создаваемых АИС (АИТ) за счет средств автоматического контроля (прежде всего, контроля проекта);

Позволяют за короткое время создавать прототип будущей АИС (АИТ), что дает возможность на ранних этапах оценить ожидаемый результат;

Ускоряют процесс проектирования и разработки системы;

Освобождают разработчика от рутинной работы, позволяя ему целиком сосредоточиться на творческой части разработки;

Поддерживают развитие и сопровождение разработки АИС (АИТ);

Поддерживают технологии повторного использования компонентов разработки.

Большинство CASE-средств основано на научном подходе, получившем название «методология/метод/нотация/средство». Методология формулирует руководящие указания для оценки и выбора проекта разрабатываемой АИС, шаги работы и их последовательность, а также правила применения и назначения методов.

К настоящему моменту СЛБЕ-технология оформилась в самостоятельное наукоемкое направление, повлекшее за собой образование мощной САБЕ-индустрии, которая объединяет сотни фирм и компаний различной ориентации. Среди них выделяются компании-разработчики средств анализа и проектирования АИС и АИТ с широкой сетью дистрибьюторских и дилерских фирм; фирмы-разработчики специальных средств с ориентацией на узкие предметные области или на отдельные этапы жизненного цикла АИС; обучающие фирмы, которые организуют семинары и курсы подготовки специалистов; консалтинговые фирмы, оказывающие практическую помощь при использовании САБЕ-пакетов для разработки конкретных АИС; фирмы, специализирующиеся на выпуске периодических журналов и бюллетеней по САБЕ-технологиям.

Практически ни один серьезный зарубежный проект АИС и АИТ не осуществляется в настоящее время без использования САБЕ-средств.

Жизненный цикл (ЖЦ) - период создания и использования АИС (АИТ), охватывающий ее различные состояния, начиная с момента возникновения необходимости в данной автоматизированной системе и заканчивая моментом ее полного выхода из употребления у пользователей.

Жизненный цикл АИС и АИТ позволяет выделить четыре основные стадии: предпроектную, проектную, внедрение и функционирование. От качества проектировочных работ зависит эффективность функционирования системы. Поэтому каждая стадия проектирования разделяется на ряд этапов и предусматривает составление документации, отражающей результаты работы.

Основными работами, выполняемыми на стадиях и этапах проектирования, можно считать:

I стадия - предпроектное обследование

1-й этап - сбор материалов для проектирования, формирование требований, изучение объекта проектирования, разработка и выбор варианта концепции системы;

2-й этап - анализ материалов и формирование документации – создание и утверждение технико-экономического обоснования и технического задания на проектирование системы на основе анализа материалов обследования, собранных на первом этапе.

II стадия - проектирование:

1-й этап - техническое проектирование, где ведется поиск наиболее рациональных проектных решений по всем аспектам разработки, создаются и описываются все компоненты системы, а результаты работы отражаются в техническом проекте;

2-й этап - рабочее проектирование, в процессе которого осуществляется разработка и доводка программ, корректировка структур баз данных, создание документации на поставку, установку технических средств и инструкций по их эксплуатации, подготовка для каждого пользователя системы обширного инструкционного материла, оформленного в виде должностных инструкций исполнителям-специалистам, реализующим свои профессиональные функции с использованием технических средств управления. Технический и рабочий проекты могут объединяться в единый документ - техно-рабочий проект.

III стадия- ввод системы в действие:

1-й этап - подготовка к внедрению - установка и ввод в эксплуатацию технических средств, загрузка баз данных и опытная эксплуатация программ, обучение персонала;

2-й этап - проведение опытных испытаний всех компонентов системы перед передачей в промышленную эксплуатацию, обучение персонала;

3-й этап (завершающая стадия создания АИС и АИТ) - сдача в промышленную эксплуатацию; оформляется актами приема-сдачи работ.

IV стадия - промышленная эксплуатация - кроме повседневного функционирования включает сопровождение программных средств и всего проекта, оперативное обслуживание и администрирование баз данных.

Жизненный цикл (ЖЦ) образуется в соответствии с принципом нисходящего проектирования и, как правило, носит итерационный характер: реализованные этапы, начиная с самых ранних, циклически повторяются в соответствии с изменениями требований и внешних условий, введением ограничений и т.п. На каждом этапе ЖЦ формируется определенный набор документов и технических решений, при этом для каждого этапа исходными являются документы и решения, полученные на предыдущем этапе. Этап завершается проверкой предложенных решений и документов на их соответствие сформулированным требованиям и начальным условиям.

Существующие варианты ЖЦ определяют, порядок исполнения этапов в ходе разработки АИС и технологий, а также критерии перехода от этапа к этапу. Наибольшее распространение получили три следующие модели ЖЦ:

1. Каскадная модель предполагает переход на следующий этап после полного окончания работ по предыдущему этапу.

2. Поэтапная модель с промежуточным контролем – итерационная модель разработки АИС и АИТ с циклами обратной связи между этапами. Преимущество такой модели заключается в том, что межэтапные корректировки обеспечивают меньшую трудоемкость разработки по сравнению с каскадной моделью; однако время жизни каждого из этапов растягивается на весь период разработки.

3. Спиральная модель делает упор на начальные этапы ЖЦ: анализ требований, проектирование спецификаций, предварительное и детальное проектирование. На этих этапах проверяется и обосновывается реализуемость технических решений путем создания прототипов. Каждый виток спирали соответствует поэтапной модели создания фрагмента или версии АИС и АИТ. На нем уточняются цели и характеристики проекта, определяется его качество, планируются работы следующего витка спирали. Таким образом, углубляются и последовательно конкретизируются детали проекта, и в результате выбирается обоснованный вариант, который доводится до реализации.

Наиболее перспективна спиральная модель ЖЦ. Специалистами фирм, занимающихся проектированием и созданием программных продуктов, отмечаются следующие преимущества спиральной модели:

Накопление и повторное использование проектных решений, средств проектирования, моделей и прототипов АИС и АИТ;

Ориентация на развитие и модификацию системы и технологии в процессе их проектирования;

Анализ риска и издержек в процессе проектирования систем и технологий.

Главная особенность разработки АИС и АИТ состоит в концентрации сложности на стадиях предпроектного обследования и проектирования и относительно невысокой сложности и трудоемкости последующих этапов. Более того, нерешенные вопросы и ошибки, допущенные на этапах анализа и проектирования, порождают на этапах внедрения и эксплуатации трудные, часто неразрешимые проблемы и, в конечном счете, приводят к отказу от использования материалов проекта.

Создание автоматизированных информационных систем и технологий в экономике может осуществляться по двум вариантам. Первый вариант предполагает, что этой работой занимаются специализированные фирмы, имеющие профессиональный опыт подготовки программных продуктов конкретной ориентации (бухгалтерский промышленный учет, бухгалтерский учет в банках, автоматизация конкретных банковских операций и т.п.), их продажи и дальнейшего сопровождения в организациях, эксплуатирующих поставленные программные средства и системы. Если АИС и АИТ создаются по второму варианту, проектированием и созданием разработок в этой области занимаются проектировщики-программисты, находящиеся в штате предприятий и организаций, где осуществляется переход на использование новых технических средств, создаются новые информационные технологии и системы. В проведении проектировочных работ в настоящее время встречаются две крайности. В одном случае строго соблюдаются стандарты изготовления документации, но зато сроки разработки сильно затягиваются, создание системы не вписывается в ритм реальной жизни и она оказывается нежизнеспособной. В другом случае умение разработчиков создавать программы для автоматизации решения отдельных задач позволяет им без задержек обеспечить процесс использования разработок конечным пользователем, система начинает работать, но создание документации отстает и в результате получается изделие, трудоемкое для эксплуатации, а освоение его в значительной степени зависит от специалистов-разработчиков. Это противоречие преодолимо при соблюдении проектной дисциплины.

В процессе разработки автоматизированных систем, рабочих мест и технологий проектировщики сталкиваются с рядом взаимосвязанных проблем.

Проектировщику сложно получить исчерпывающую информацию для оценки формулируемых заказчиком (пользователем) требований к новой системе или технологии.

Заказчик нередко не имеет достаточных знаний о проблемах автоматизации обработки данных в новой технической среде, чтобы судить о возможности реализации тех или иных инноваций. В то же время проектировщик сталкивается с чрезмерным количеством подробных сведений о проблемной области, что вызывает трудности моделирования и формализованного описания реализуемых в новых условиях информационных процессов, решения функциональных задач.

Спецификация проектируемой системы из-за большого объема и технических терминов часто непонятна заказчику, а чрезмерное ее упрощение не может удовлетворить специалистов, создающих систему.

С помощью известных аналитических методов можно разрешить некоторые из перечисленных проблем, однако радикальное решение дают только современные структурные методы, среди которых центральное место занимает методология структурного анализа.

На предпроектной стадии проводится изучение и анализ особенностей объекта проектирования с целью уточнения требований заказчика, их формализованного представления и документирования. В частности, выявляется совокупность условий, при которых предполагается эксплуатировать будущую систему аппаратные и программные ресурсы, предоставляемые системе; внешние условия ее функционирования; состав людей и работ, имеющих к ней отношение и участвующих в информационных и управленческих процессах, производится описание выполняемых системой функций и т.п. На этой же стадии устанавливаются ограничения процесса разработки (директивные сроки завершения отдельных этапов, имеющиеся ресурсы, организационные процедуры и мероприятия, обеспечивающие защиту информации и т.п.).

Целью анализа на этой стадии является преобразование oбщих, неясных знаний о требованиях к будущей системе в точные (по возможности) определения. Так, на этом этапе определяются:

Архитектура системы, ее функции, внешние условия, распределение функций между аппаратными средствами и программным обеспечением;

Интерфейсы и распределение функций между человеком и системой;

Требования к программным и информационным компонентам системы, необходимые аппаратные ресурсы, требования базе данных, физические характеристики компонентов системы, их интерфейсы.

Качество дальнейшего проектирования решающим образом висит от правильного выбора методов анализа, сформулированных требований к вновь создаваемой технологии. Эти методы служат для проведения изучения и исследования, разработки и оценки проектных решений, закладываемых при создании АС, а также обеспечения экономии затрат и сокращения сроков проектирования и внедрения системы.

Методика создания АИС и АИТ

Методы, используемые на стадии предпроектного обследования, подразделяются на методы изучения и анализа фактического состояния объекта (технологии), методы формирования заданного состояния, методы графического представления фактического и заданного состояний (рис.7). Рассмотрим эти методы более подробно.

Методы изучения и анализа фактического состояния экономического объекта или технологии. Эти методы позволяют выявить узкие места в исследуемых процессах и включают:

Устный или письменный опрос;

Письменное анкетирование;

Наблюдение, измерение и оценку;

Групповое обсуждение;

Анализ задач;

Анализ процесса.

Устный и письменный опрос. Устный опрос производится по заранее составленному вопроснику на рабочем месте специалиста с записью ответов и позволяет в форме несложной беседы понять технологию работы и опыт опрашиваемого. Затруднения психологического порядка легко преодолеваются и можно приступить к подготовке нового решения уже на стадии анализа.

Недостатком этого метода является разнородность результатов опроса.

Письменное анкетирование с помощью перечня вопросов дает (при условии готовности опрашиваемых к правдивым ответам) полную и основательную информацию. При достаточно большом количестве анкет практикуется их обработка на ЭВМ. Чтобы повысить качество анкетирования, целесообразно ввести подсказку ответов: «да - нет», «малый - средний - большой» и т.д. Существенное влияние на качество результатов оказывают четкость, недвусмысленность вопросов, поэтому разработка перечня вопросов предполагает знание принципиальной проблемной ситуации.


Рис. 7. Работы и методы их выполнения на предпроектной стадии.

Наблюдение, измерение и оценка. С помощью этих методов собираются сведения о параметрах, признаках и объектах в соответствующей сфере исследования. Важные для изучения параметры, признаки и объекты точно оцениваются сотрудниками и регистрируются в карточках или в формулярах (например, по частоте, количеству, продолжительности, затратам.) Накопление сведений анализ результатов при достаточно большом количестве наблюдений выполняется на ЭВМ.

Групповое обсуждение проводится проектировщиками, программистами совместно с пользователями или заказчиками с целью обобщения и обсуждения всех важных для решения проблем вопросов и определения необходимых задач.

Анализ производственных, управленческих и информационных процессов используется для подготовки решений, касающихся реорганизации технологии информационных процессов. С помощью анализа процесса решения задач разрабатываются необходимые изменения, которые должны быть внесены в информационную технологию. Одновременно уточняются целевые установки решаемых задач.

Анализ производственных, управленческих и информационных процессов должен охватывать в первую очередь следующее: обследуемый объект; цель и результат решения управленческих задач; составляющие технологического процесса - решения, операции и алгоритмы; объем и качество информации; средства обработки информация; требования к управленческому персоналу и рабочему месту; методы работы; узкие места, помехи, трудности; требования рациональной организации техпроцесса.

В целом методы изучения и анализа фактического состояния управленческой деятельности и существующей технологии решения задач предназначены для установления и оценки процессов, функций, предъявляемых к работникам требований, последовательности выполнения технологических операций и средств труда, продолжительности и сроков выполнения работ, потоков информации. Они способствуют сбору необходимых материалов и формированию необходимой исходной основы для проектирования АИС и АИТ.

Методы формирования заданного состояния. Основываются на теоретическом обосновании всех составных частей и элементов АИС исходя из целей, требовании и условий заказчика. К данным методам, представляющим собой рабочие средства проектировщиков, относятся методы:

Моделирование процесса управления;

Структурное проектирование;

Декомпозиция;

Анализ информационного процесса.

Метод моделирования процесса управления. В процессе изучения объекта проектирования строятся экономико-организационные и информационно-логические модели, которые включают задачи, структуры и ресурсы объекта. Они отражают хозяйственные и управленческие отношения, а также связанные с ними информационные потоки. Представляя комбинацию материальных и информационных процессов, способствуют повышению уровня организации объекта.

Информационно-логические модели содержат необходимые сведения об информационных связях между органами и сферами управления, комплексами решаемых задач и отдельными задачами в единстве с хозяйственными процессами.

Метод структурного (модульного) проектирования позволяет разработать проект четко разграниченных блоков (модулей), между которыми устанавливаются связи посредством входной и выходной информации, а также показывается иерархия их подчиненности. Условиями применения этого метода являются разбиение крупных комплексов задач на подкомплексы и точное обозначение (идентификация) всех звеньев разъединения и сопряжения. Метод структурного проектирования позволяет разделить весь комплекс задач на обозримые и поддающиеся анализу подкомплексы (модули).

Методы графического представления фактического и заданного состояний предусматривают использование для наглядного представления процессов обработки информации в форме блок-схем, графиков прохождения документов и т.д. Графические методы являются составной частью любого проекта и необходимы для практической работы, поскольку выполняют роль вспомогательного средства при описании внедрения новых технологий. К наиболее известным из них относятся блок - схемный метод, методы стрелочных диаграмм, сетевых графиков, таблиц последовательности операций прохождения процессов. Различия методов выражаются в степени их реализации на ПЭВМ, наглядности, глубине отражаемых процессов.

Если на предпроектной стадии должны быть тщательно проанализированы особенности объекта проектирования, четко сформулированы в техническом задании требования к созданию АИС и АИТ, то проектирование должно дать ответ на вопрос: «Как (каким образом) система будет удовлетворять предъявленным к ней требованиям?». Задачей этой стадии является формирование новой структуры системы и логических взаимосвязей ее элементов, которые будут функционировать на предложенной технологической платформе. Проектирование реализует итерационный процесс получения логической модели системы вместе со строго сформулированными целями, поставленными перед нею, а также написание спецификаций физической системы, удовлетворяющей этим требованиям. Обычно стадию проектирования разделяют на два этапа.

1. Создание проектных решений, проектирование архитектуры АИС, включающее разработку структуры и интерфейсов компонентов, согласование функций и технических требований к компонентам, методам и стандартам проектирования, производство отчетных документов.

2. Детальное (рабочее) проектирование, включающее разработку спецификаций каждого компонента и, прежде всего, создание или привязку программных средств, интерфейсов между компонентами, разработку плана интеграции компонентов, формирование обширных инструкционных материалов.

В результате проведения этапов проектирования должен быть получен проект системы, содержащий достаточно информации для реализации системы в рамках бюджета выделенных ресурсов и времени.

При разработке проекта АИС и АИТ обеспечиваются разделение труда, кооперация и общение между разработчиками и заказчиками. По мере повышения уровня проектирования неоднократно повышается ответственность за принятие проектных решений. Для обеспечения качественного выполнения проекта этапы разработки системы увязываются с процессом организации ведения проектировочных работ, который включает следующее: разработку целей, задач и организационных принципов при постановке задачи; формирование принципиального проектного решения при выработке концепции проекта и варианта АИС и АИТ; материально- техническая реализация проектировочных работ при подготовке и отладке программ; апробация организационных решений при опытной эксплуатации и сдаче проекта АИС и АИТ; использование проектных и организационных решений при эксплуатации АИС и АИТ.

Этапы процесса организации и ведения проектировочных работ отражают принципиальный путь разработки и реализации новых проектных решений. Эта типовая концепция пригодна для организации проектирования с различными формами использования средств труда, включая применение ПЭВМ и автоматизацию проектирования. При этом не учитывается характер проблем, подлежащих решению в конкретном случае. На основе типовой концепции организации проектирования каждый этап может быть уточнен в зависимости от повторяющихся рабочих операций. Затем для каждого проекта АИС и АИТ выбираются подлежащие выполнению работы и сводятся в календарный план. В зависимости от характера и сложности решаемых проблем может возникнуть необходимость многократного выполнения определенных этапов. В рамках рабочих этапов предусматривается закрепление за отдельными исполнителями ответственности за разработку задач, стадий проекта и программ.

В процессе организации проектирования принимаются разнообразные решения, влияющие на динамику и качество выполнения работ. Поэтому для каждого этапа проектирования определяются: ожидаемые результаты и документы; персональные функции руководителя; решения, принимаемые руководителем; функции заказчика и разработчика АИС и АИТ.

Согласования с параллельно выполняемыми во времени работами при выборе, обучении, высвобождении и перемещении кадров, а также при подготовке и реализации инвестиционных мероприятий и других работ обязательно включаются в содержание рабочих этапов и находят отражение в проектной и исполнительной документации.

Исполнительная документация относится к отдельным процессам, сферам и разрабатывается в рамках всей проектируемой АИТ. В состав документации входят: организационные инструкции рабочих процессов, программы для рабочих мест, инструкции по оформлению документов, рекомендации по использованию информации, методов, таблиц решений и т.д.

Охарактеризовав содержание проектировочных работ при создании АИС и АИТ, нельзя не остановиться на наиболее распространенных в настоящее время методах ведения проектировочных работ.

В современных условиях АИС, АИТ и АРМ, как правило, не создаются на пустом месте. В экономике практически на всех уровнях управления и на всех экономических объектах - от органов регионального управления, финансово-кредитных организаций, предприятий, фирм до организаций торговли и сфер обслуживания функционируют системы автоматизированной обработки информации. Однако переход к рыночным отношениям, возросшая в связи с этим потребность в своевременной, качественной, оперативной информации и оценка ее как важнейшего ресурса в управленческих процессах вызывают необходимость перестройки функционирующих автоматизированных информационных систем в экономике, создания АИС и АИТ на новой технической и технологической базах.

Поиск рациональных путей проектирования ведется по следующим направлениям: разработка типовых проектных решений, зафиксированных в пакетах прикладных программ (ППП), решения экономических задач с последующей привязкой ППП к конкретным условиям внедрения и функционирования, разработка автоматизированных систем проектирования. Рассмотрим первый из путей, т.е. возможности использования типовых проектных решений, включенных в пакеты прикладных программ.

Наиболее эффективно информатизации поддаются следующие виды деятельности: бухгалтерский учет, справочное и информационное обеспечение экономической деятельности, организация труда руководителя, документооборот, экономическая и финансовая деятельность, обучение.

Наибольшее число ППП создано для бухгалтерского учета. Среди них можно отметить «1С:Бухгалтерия», «Турбо-Бухгалтер», «ИнфоБухгалтер», «Парус», «ABACUS», «Бэмби+», «Бухкомплекс», «Бэст», «Лука».

Справочное и информационное обеспечение экономической деятельности представлено следующими ППП: «ГАРАНТ» (налоги, бухучет, аудит, предпринимательство, банковское дело, валютное регулирование, таможенный контроль), «КОНСУЛЬТАНТ+», (налоги, бухучет, аудит, предпринимательство, банковское дело, валютное регулирование, таможенный контроль).

Экономическая и финансовая деятельность поддерживается следующими ППП:

«Экономический анализ и прогноз деятельности фирмы, организации» (фирма ИНЕК), реализующий функции: экономический анализ деятельности фирмы, предприятия; бизнес-план; технико-экономическое обоснование возврата кредитов; анализ и отбор вариантов деятельности; прогноз баланса, потоков денежных средств и готовой продукции;

«Финансовый анализ предприятия» (фирма Инфософт), реализующий функции: общая оценка финансового состояния; анализ финансовой устойчивости; анализ ликвидности баланса; анализ финансовых коэффициентов (ликвидность, маневренность, покрытие, соотношение заемных и собственных средств); анализ коэффициентов деловой активности; расчет и анализ коэффициентов оборачиваемости; оценка рентабельности производства.

В области создания финансово-кредитных систем работают фирмы «Диасофт», «Инверсия», R-Style, Программбанк, «Асофт» и др.

В условиях конкуренции выигрывают те предприятия, чьи стратегии в бизнесе объединяются со стратегиями в области информационных технологии. Поэтому реальной альтернативой варианту выбора единственного пакета является подбор некоторого набора пакетов различных поставщиков, которые удовлетворяют наилучшим образом той или иной функции АИС (подход mix-and-match). Такой подход смягчает некоторые проблемы, возникающие при внедрении и привязке программных средств, а АИТ будет более соответствовать функциям конкретной индивидуальности предметной области.

В последнее время все большее число банков, организации, предприятий предпочитают покупать готовые пакеты и технологии, а если необходимо, добавлять к ним свое программное обеспечение, так как разработка собственных АИС и АИТ связана с высокими затратами и риском. Эта тенденция привела к тому, что поставщики систем изменили ранее существовавший способ выхода на рынок. Как правило, разрабатывается и предлагается теперь базовая система, которая адаптируется в соответствии с пожеланиями индивидуальных клиентов. При этом пользователям предоставляется консультации, помогающие минимизировать сроки внедрения систем и технологий, наиболее эффективно их использовать, повысить квалификацию персонала.

Например, банковская АИС Atlas фирмы Internet спроектирована для любых возможных конфигураций системы. Банки могут, используя свой собственный персонал, настроить конфигурацию системы в соответствии со своими требованиями. Для этого в системе Atlas имеется полный набор средств разработки - обучение, консультации и поддержка.

Аналогично обстоит дело при разработке АИС в других областях экономики. Так, например, разработка АИС для страховой деятельности по силам только специализированным организациям, обобщающим практический опыт работы страховщиков, тесно взаимодействующим с аудиторскими организациями и имеющим штат высококвалифицированных постановщиков задач и программистов.

Автоматизированные системы проектирования - второй, быстроразвивающийся путь ведения проектировочных работ.

В области автоматизации проектирования АИС и АИТ за последнее десятилетие сформировалось новое направление - CASE (Computer-Aided Software/System Engineering). Лавинообразное расширение областей применения ПЭВМ, возрастающая сложность инфосистем, повышающиеся к ним требования привели к необходимости индустриализации технологий их создания. Важное направление в развитии технологий составили разработки интегрированных инструментальных средств, базирующихся на концепциях жизненного цикла и управления качеством АИС и АИТ, представляющих собой комплексные технологии, ориентированные на создание сложных автоматизированных управленческих систем и поддержку их полного жизненного цикла или ряда его основных этапов. Дальнейшее развитие работ в этом направлении привело к созданию ряда концептуально целостных, оснащенных высокоуровневыми средствами проектирования и реализации вариантов, доведенных по качеству и легкости тиражирования до уровня программных продуктов технологических систем, которые получили название CASE-систем или CASE-технологии.

В настоящее время не существует общепринятого определения CASE. Содержание этого понятия обычно определяется перечнем задач, решаемых с помощью CASE, а также совокупностью применяемых методов и средств. CASE-технология представляет собой совокупность методов анализа, проектирования, разработки и сопровождения АИС, поддержанной комплексом взаимосвязанных средств автоматизации. CASE - это инструментарий для системных аналитиков, разработчиков и программистов, позволяющий автоматизировать процесс проектирования и разработки АИС. При этом CASE-системы используются не только как комплексные технологические конвейеры для производства АИС и АИТ, но и как мощный инструмент решения исследовательских и проектных задач, таких как структурный анализ предметной области, спецификация проектов средствами языков программирования четвертого поколения, выпуск проектной документации, тестирование реализаций проектов, планирование и контроль разработок, моделирование деловых приложений с целью решения задач оперативного и стратегического планирования и управления ресурсами и т.п.

Основная цель CASE-технологии состоит в том, чтобы отделить проектирование АИС и АИТ от кодирования и других «низко интеллектуальных» этапов разработки, а также максимально автоматизировать процессы разработки и функционирования систем.

При использовании CASE-технологии изменяется технология деления работ на всех этапах жизненного цикла автоматизированных систем и технологий, при этом наибольшие изменения касаются этапов анализа и проектирования. В большинстве современных CASE-систем применяются методологии структурного анализа и проектирования, основанные на наглядных диаграммных техниках, при этом для описания модели проектируемой АИС используются графы, диаграммы, таблицы и схемы. Такие методологии обеспечивают строгое и наглядное описание проектируемой системы, которое начинается с ее общего обзора и затем детализируется, приобретая иерархическую структуру с все большим числом уровней.

CASE-технологии успешно применяются для построения практически всех типов АИС, однако устойчивое положение они занимают в области обеспечения разработки деловых и коммерческих АИС. Широкое применение CASE-технологии обусловлено массовостью этой прикладной области, в которой CASE применяется не только для разработки АИС, но и для создания моделей систем, помогающих коммерческим структурам решать задачи стратегического планирования, управления финансами, определения политики фирм, обучения персонала и др. Это направление получило свое собственное название - бизнес-анализ. Например, для наиболее быстрой и эффективной разработки высококачественной банковской системы финансисты все чаше обращаются к помощи технологии CASE. Поставщики этой технологии входят в положение финансистов и быстро расширяют рынок средств. Быстрейшему внедрению технологии CASE способствует также усложнение банковских систем.

CASE - не революция в автоматизации проектирования АИС, а результат естественного эволюционного развития всей отрасли средств, называемых ранее инструментальными или технологическими. Одним из ключевых признаков является поддержка методологий структурного системного анализа и проектирования.

С самого начала целью развития CASE-технологии было преодоление ограничений при использовании структурных методологии проектирования 1960–1970-х гг. (сложности понимания, большой трудоемкости и стоимости использования, трудности внесения изменений в проектные спецификации и т.д.) за счет их автоматизации и интеграции поддерживающих средств. Таким образом, CASE-технологии не могут считаться самостоятельными методологиями, они только развивают структурные методологии и делают более эффективным их применение за счет автоматизации.

Помимо автоматизации структурных методологий и как следствие возможности применения современных методов системной и программной инженерии, CASE-технологии обладают следующими основными достоинствами:

Улучшают качество создаваемых АИС (АИТ) за счет средств автоматического контроля (прежде всего, контроля проекта);

Позволяют за короткое время создавать прототип будущей АИС (АИТ), что дает возможность на ранних этапах оценить ожидаемый результат;

Ускоряют процесс проектирования и разработки системы;

Освобождают разработчика от рутинной работы, позволяя ему, целиком сосредоточиться на творческой части разработки;

Поддерживают развитие и сопровождение разработки АИС (АИТ);

Поддерживают технологии повторного использования компонентов разработки.

Большинство CASE-средств основано на научном подходе, получившем название «методология/метод/нотация/средство». Методология формулирует руководящие указания для оценки и выбора проекта разрабатываемой АИС, шаги работы и их последовательность, а также правила применения и назначения методов.

К настоящему моменту CASE-технология оформилась в самостоятельное наукоемкое направление, повлекшее за собой образование мощной CASE-индустрии, которая объединяет сотни фирм и компаний различной ориентации. Среди них выделяются компании-разработчики средств анализа и проектирования АИС и АИТ с широкой сетью дистрибьюторских и дилерских фирм; фирмы-разработчики специальных средств с ориентацией на узкие предметные области или на отдельные этапы жизненного цикла АИС; обучающие фирмы, которые организуют семинары и курсы подготовки специалистов; консалтинговые фирмы, оказывающие практическую помощь при использовании CASE-пакетов для разработки конкретных АИС; фирмы, специализирующиеся на выпуске периодических журналов и бюллетеней по CASE-технологиям.

План постановки задачи

I. Организационно-экономическая сущность задачи:

наименование задачи, место ее решения;

Цель решения;

Назначение (для каких объектов подразделений и пользователей предназначена);

Периодичность решения и требования к срокам решения;

Источники и способы поступления данных;

Потребители результатной информации и способы ее отправки;

Информационная связь с другими задачами.

II. Описание исходной (входной) информации:

перечень исходной информации;

Формы представления (документ) по каждой позиции перечня; примеры заполнения документов;

Количество документов (информации) в единицу времени, количество строк в документе (массиве);

Описание структурных единиц информации (каждого элемента данных, реквизита);

Точное и полное наименование, идентификатор, максимальная разрядность в знаках;

Способы контроля исходных данных:

Контроль разрядности реквизита;

Балансовый или расчетный метод контроля количественных значений реквизитов;

III. Описание результатной (выходной) информации:

перечень результатной информации;

Формы представления (печатная сводка, видеограмма, машинный носитель и его макет и т.д.);

Периодичность и сроки представления;

Количество документов (информации) в единицу времени,; количество строк в документе (массиве);

Перечень пользователей результатной информацией (подразделение и персонал);

Перечень регламентной и запросной информации;

Описание структурных единиц информации (каждого элемента данных, реквизита) по аналогии с исходными данными;

Способы контроля результатной информации;

Контроль разрядности;

Контроль интервала значений реквизита;

Контроль соответствия списку значений;

Балансовый или расчетный метод контроля отдельных показателей;

Метод контроля с помощью контрольных сумм и любые другие возможные способы контроля.

IV. Описание алгоритма решения задачи (последовательности действий и логики решения задачи):

Описание способов формирования результатной информации с указанием последовательности выполнения логических и арифметических действий;

Описание связей между частями, операциями, формулами алгоритма;

Требования к порядку расположения (сортировке) ключевых (главных) признаков в выходных документах, видеограммах, например, по возрастанию значении табельных номеров;

Алгоритм должен учитывать общий и все частные случаи решения задачи.

Примечание. При описании алгоритма следует использовать условные обозначения (идентификаторы) реквизитов, присвоенные при описании исходной и результатной информации; допускается текстовое описание алгоритма. Необходимо предусмотреть контроль вычислений на отдельных этапах, операциях выполнения алгоритма. При этом указываются контрольные соотношения, которые позволяют выявить ошибки.

V. Описание, используемой условно-постоянной информации:

перечень условно-постоянной информации (классификаторов, справочников, таблиц, списков с указанием их полных наименований);

Формы представления;

Описание структурных единиц информации (по аналогии с исходными записями);

Способы взаимодействия с переменной информацией.

Внедрение АИС и АИТ, как показывает опыт, ведет к качественным переменам в труде пользователей: расширяются их профессиональные знания, приобретаются навыки работы в автоматизированной информационной сфере.

Новая информационная технология может иметь ряд позитивных последствий:

Обработка исходных данных и проведение расчетов поручается не имеющим высокой квалификации и необходимых практических навыков работникам, а высококвалифицированным специалистам отводится анализ, выбор вариантов расчетов, разработка управленческих решений.

Работа с ПЭВМ приводит к повышению квалификации всех исполнителей и общему, довольно высокому уровню их профессиональной культуры.

Сэкономленное в результате автоматизации обработки расчетов и оформления документов время используется на проведение расчетов в нескольких вариантах, получение альтернативных оценок ситуации, что необходимо для анализа и принятия обоснованных решений.

Было бы неправильно предполагать, что высвобожденное время (за счет работы на компьютере) должно вести к сокращению численности экономистов, бухгалтеров и других специалистов, так как проведение расчетов является лишь частью основной задачи – принятия необходимого решения. При сокращении времени на проведение расчетов время на анализ и принятие решений увеличивается.

Таким образом, создание АИС и АИТ не столько приводит к высвобождению специалистов, сколько выдвигает к ним новые требования, т, е. позволяет качественно изменить их труд.

Наиболее важным требованием к специалистам является умение осуществить постановку задач, т.е. составить алгоритмы их решения, установить состав информационного наполнения вычислительных процедур для получения искомых результатов, сформулировать требования к методам контроля решаемых задач.

5. Автоматизированное рабочее место – средство
автоматизации работы конечного пользователя

Деятельность работников сферы управления (бухгалтеров, специалистов кредитно-банковской системы, плановиков и т/д.) в настоящее время ориентирована на использование развитых технологий. Организация и реализация управленческих функций требует радикального изменения, как самой технологии управления, так и технических средств обработки информации, среди которых главное место занимают персональные компьютеры. Они все более превращаются из систем автоматической переработки входной информации в средства накопления опыта управленческих работников, анализа, оценки и выработки наиболее эффективных экономических решений.

Тенденция к усилению децентрализации управления влечет за собой распределенную обработку информации с децентрализацией, применения средств вычислительной техники, и совершенствованием организации непосредственно рабочих мест пользователей.

Автоматизированное рабочее место(АРМ) можно определить как совокупность информационно – программно - технических ресурсов, обеспечивающую конечному пользователю обработку данных и автоматизацию управленческих функций в конкретной предметной области.

Создание автоматизированных рабочих мест предполагает, что основные операции по накоплению, хранению и переработке информации возлагаются на вычислительную технику, а экономист выполняет часть ручных операций и операций, требующих творческого подхода при подготовке управленческих решений. Персональная техника применяется пользователем для контроля производственно-хозяйственной деятельности, изменения значений отдельных параметров в ходе решения задачи, а также ввода исходных данных в АИС для решения текущих задач и анализа функций управления.

АРМ как инструмент для рационализации и интенсификации управленческой деятельности создается для обеспечения выполнения некоторой группы функций. Наиболее простой функцией АРМ является информационно-справочное обслуживание. Хотя эта функция в той или иной степени присуща любому АРМ, особенности ее реализации существенно зависят от категории пользователя.

АРМ имеют проблемно-профессиональную ориентацию на конкретную предметную область. Профессиональные АРМ являются главным инструментом общения человека с вычислительными системами, играя роль автономных рабочих мест, интеллектуальных терминалов больших ЭВМ, рабочих станций в локальных сетях. АРМ имеют открытую архитектуру и легко адаптируются к проблемным областям.

Локализация АРМ позволяет осуществить оперативную обработку информации сразу же по ее поступлении, а результаты обработки хранить сколь угодно долго по требованию пользователя.

В условиях реализации управленческого процесса целью внедрения АРМ является усиление интеграции управленческих функций, и каждое более или менее «интеллектуальное» рабочее место должно обеспечивать работу в многофункциональном режиме.

АРМ выполняют децентрализованную одновременную обработку экономической информации на рабочих местах исполнителей в составе распределенной базы данных (БД). При этом они имеют выход через системное устройство и каналы связи в ПЭВМ и БД других пользователей, обеспечивая, таким образом, совместное функционирование ПЭВМ в процессе коллективной обработки.

АРМ, созданные на базе персональных компьютеров, наиболее простой и распространенный вариант автоматизированного рабочего места для работников сферы организационного управления. Такое АРМ рассматривается как система, которая в интерактивном режиме работы предоставляет конкретному работнику (пользователю) все виды обеспечения монопольно на весь сеанс работы. Этому отвечает подход к проектированию такого компонента АРМ, как внутреннее информационное обеспечение, согласно которому информационный фонд на магнитных носителях конкретного АРМ должен находиться в монопольном распоряжении пользователя АРМ. Пользователь сам выполняет все функциональные обязанности по преобразованию информации.

Создание АРМ на базе персональных компьютеров обеспечивает:

Простоту, удобство и дружественность по отношению к пользователю;

Простоту адаптации к конкретным функциям пользователя;

Компактность размещения и невысокие требования к условиям эксплуатации;

Высокую надежность и живучесть;

Сравнительно простую организацию технического обслуживания.

Эффективным режимом работы АРМ является его функционирование в рамках локальной вычислительной сети в качестве рабочей станции. Особенно целесообразен такой вариант, когда требуется распределять информационно-вычислительные ресурсы между несколькими пользователями.

Более сложной формой является АРМ с использованием ПЭВМ в качестве интеллектуального терминала, а также с удаленным доступом к ресурсам центральной (главной) ЭВМ или внешней сети. В данном случае несколько ПЭВМ подключаются по каналам связи к главной ЭВМ, при этом каждая ПЭВМ может работать и как самостоятельное терминальное устройство.

В наиболее сложных системах АРМ могут через специальное оборудование подключаться не только к ресурсам главной ЭВМ сети, но и к различным информационным службам и системам общего назначения (службам новостей, национальным информационно-поисковым системам, базам данных и знаний, библиотечным системам и т.п.).

Возможности создаваемых АРМ в значительной степени зависят от технико-эксплуатационных характеристик ЭВМ, на которых они базируются. В связи с этим на стадии проектирования АРМ четко формулируются требования к базовым параметрам технических средств обработки и выдачи информации, набору комплектующих модулей, сетевым интерфейсам, эргономическим параметрам устройств и т.д.

Синтез АРМ, выбор его конфигурации и оборудования для реальных видов экономической и управленческой работы носят конкретный характер, диктуемый специализацией, поставленными целями, объемами работы. Однако любая конфигурация АРМ должна отвечать общим требованиям в отношении организации информационного, технического, программного обеспечения.

Информационное обеспечение АРМ ориентируется на конкретную, привычную для пользователя, предметную область обработка документов должна предполагать такую структуризацию информации, которая позволяет осуществлять необходимое манипулирование различными структурами, удобную и быструю корректировку данных в массивах.

Техническое обеспечение АРМ должно гарантировать высокую надежность технических средств, организацию удобных для пользователя режимов работы (автономный, с распределенной БД, информационный, с техникой верхних уровней и т.д.), способность обработать в заданное время необходимый объем данных. Поскольку АРМ является индивидуальным пользовательским средством, оно должно обеспечивать высокие эргономические свойства и комфортность обслуживания.

Программное обеспечение, прежде всего, ориентируется на профессиональный уровень пользователя, сочетается с его функциональными потребностями, квалификацией и специализацией. Пользователь со стороны программной среды должен ощущать постоянную поддержку своего желания работать в любом режиме активно либо пассивно. Приоритет пользователя при работе с техникой несомненен. Поэтому при их взаимодействии предусматривается максимальное обеспечение удобств работы человека за счет совершенствования программных средств:

В последнее время наметилась тенденция к созданию унифицированных АРМ, обслуживающих несколько предметных областей. Например, комплекс «АРМ-аналитик», созданный на базе «АРМ-статистика», значительно расширяет возможности последнего и в максимальной степени отвечает требованиям зарождающихся в условиях рынка производственных, научных и коммерческих структур. «АРМ-аналитик» позволяет осуществлять решение обширного комплекса функциональных задач.

Комплекс «Экспресс-анализ при заключении договоров, заказов, контрактов» обеспечивает процесс управления аналитической информацией о себестоимости, цене, возможных объемах производства отдельных видов продукции.

Комплексы «Анализ формирования, распределения и использования прибыли», «Анализ материально-технического и финансового состояния предприятия», «Анализ труда, оплаты и социального развития», «Анализ выполнения госзаказов и хозяйственных договоров» соответствуют структуре действующего законодательства о предприятии. Причем, чтобы АРМ-аналитик мог использоваться для предприятий, работающих по различным моделям, в него введены все действующие схемы формирования дохода.

Программное обеспечение комплекса «Анализ внешнеторговой деятельности» позволяет анализировать валютные затраты, их эффективность и расчеты с государством.

Комплексы «Анализ и прогнозирование динамических рядов», «Корреляционно-регрессионный анализ», «Выборочный метод» дают возможность автоматизирование осуществлять социально-экономический анализ с использованием статистических методов.

Комплекс «Сервисные программы» позволяет получать обработанную информацию в виде графиков и схем, редактировать входную информацию, корректировать хранящиеся в файлах АРМ данные.

«АРМ-аналитик» представляет собой многорежимный и многоцелевой комплекс, в котором нашли отражение и развитие интеграционные, аналитические и информационные процессы. В нем сочетается социально-экономический и статистический анализ, реализована обработка оперативной, бухгалтерской и статистической информации.

Все функциональные режимы обработки информации могут технологически осуществляться в «АРМ-аналитик» на основе централизованного и децентрализованного информационного обеспечения.

«АРМ-аналитик» является универсальным средством автоматизации решения задач многоуровневого анализа деятельности предприятий и фирм, которое при наличии развитого набора пакетов прикладных программ легко адаптируется к решению более сложных в математическом понимании задач.







2024 © fealta.ru.